Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins.
نویسندگان
چکیده
Shigella, the etiological agent of human bacillary dysentery, invades the colonic epithelium where it induces an intense inflammatory response. Entry of Shigella into epithelial cells involves a type III secretion machinery, encoded by the mxi and spa operons, and the IpaA-D secreted proteins. In this study, we have identified secreted proteins of 46 and 60 kDa as the products of virA and ipaH9.8, respectively, the latter being a member of the ipaH multigene family. Inactivation of virA did not affect entry into epithelial cells. Using lacZ transcriptional fusions, we found that transcription of virA and four ipaH genes, but not that of the ipaBCDA and mxi operons, was markedly increased during growth in the presence of Congo red and in an ipaD mutant, two conditions in which secretion through the Mxi-Spa machinery is enhanced. Transcription of the virA and ipaH genes was also transiently activated upon entry into epithelial cells. These results suggest that transcription of the virA and ipaH genes is regulated by the type III secretion machinery and that a regulatory cascade differentially controls transcription of genes encoding secreted proteins, some of which, like virA, are not required for entry.
منابع مشابه
MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system.
The mxi-spa locus on the virulence plasmid of Shigella flexneri encodes components of the type III secretion system. mxiE, a gene within this locus, encodes a protein that is homologous to the AraC/XylS family of transcriptional regulators, but currently its role in pathogenesis remains undefined. We characterized the virulence phenotype of a nonpolar mxiE mutant and found that this mutant reta...
متن کاملVirB-mediated positive feedback control of the virulence gene regulatory cascade of Shigella flexneri.
Shigella flexneri is a facultative intracellular pathogen that relies on a type III secretion system and its associated effector proteins to cause bacillary dysentery in humans. The genes that encode this virulence system are located on a 230-kbp plasmid and are transcribed in response to thermal, osmotic, and pH signals that are characteristic of the human lower gut. The virulence genes are or...
متن کاملThe Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes
Bacterial type III secretion systems serve to translocate proteins into eukaryotic cells, requiring a secreton and a translocator for proteins to pass the bacterial and host membranes. We used the contact hemolytic activity of Shigella flexneri to investigate its putative translocator. Hemolysis was caused by formation of a 25-A pore within the red blood cell (RBC) membrane. Of the five protein...
متن کاملAnalysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri.
Proteins directly involved in entry and dissemination of Shigella flexneri into epithelial cells are encoded by a virulence plasmid of 200 kb. A 30-kb region (designated the entry region) of this plasmid encodes components of a type III secretion (TTS) apparatus, substrates of this apparatus and their dedicated chaperones. During growth of bacteria in broth, expression of these genes is induced...
متن کاملLiposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.
Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 17 10 شماره
صفحات -
تاریخ انتشار 1998